Product Manual 1600, 1600i and 3200i

1 Introduction
2 Dimensions and typical applications
3 Installation guidelines for EMC
4 Terminal specification and block diagram

5 Installation and commissioning
6 Customer presets and log
7 Trouble shooting guide
8 Detailed specification

Please read and understand this manual prior to installing the unit. Please obtain expert help if you are not qualified to install this equipment. Make the safety of your installation a priority. This component is hazardous.

Introduction. Models 1600, 1600i, 3200i

Sprint Elecric offers a family of D.C. THYRISTOR drive modules all with the same features and terminals. The user selects the appropriate model depending on required power output and the need for isolated electronics. The 1600 is NON-ISOLATED. The 1600i and the 3200i have isolated control electronics

DRIVE TYPE	AC SUPPLY VOLTAGE	AMERICAN OPTIONS	NOMINAL OUTPUT	MAX. CURRENT	PRODUCT DISSIPATION at full current	ISOLATION
1600/LV	60/30		48/24V	16 AMPS	50 watts	NON ISOLATED
1600	240/110		180/90V	16 AMPS	50 watts	NON ISOLATED
1600i/LV	60/30		48/24V	16 AMPS	50 watts	ISOLATED
1600i	240/110		180/90V	16 AMPS	50 watts	ISOLATED
3200i/LV	60/30		48/24V	8/16/32/48 AMPS	25/50/100/150 watts	ISOLATED
3200i	415/240	240/110	320/180/V(90 US)	8/16/32/48 AMPS	25/50/100/150 watts	ISOLATED

All types are of open chassis construction for use in a suitable enclosure

GENERAL DESGRIPTION

The units employ closed loop control of both armature current and feedback voltage to give precise control of the motor torque and speed. The motor and drive are protected by a stall timer which automatically removes power after 30 seconds if the required speed cannot be achieved. The drives will provide up to 150% of the preset maximum current for up to 30 seconds allowing high short term torques during acceleration etc. Independant control of either the current or speed loops by external inputs allows torque or speed control applications with overspeed or overcurrent protection. The demand signal may be derived from a potentiometer, $0-10 \mathrm{~V}$ signal or $4-20 \mathrm{~mA}$ loop. The speed feedback signal may be selected to be the ARMATURE VOLTAGE or a shaft mounted TACHOMETER.

INPUTS AND OUTPUTS

+aux input	speed output	+24 V unregulated output
-aux input	current output	+12 V regulated output
current input	ramp output	+10 V precision reference
$4-20 \mathrm{~mA}$ input	demand output	-12 V regulated output
0 to 10 V input	zero/stall relay	-24 V unregulated output

ADJUSTABLE PARAMETERS	Max speed Min speed	Up ramp Max current Down ramp IR comp	Stability
SWITCHED FUNGTIONS	Maximum current range Relay function	Maximum feedback Power up hold	Tacho feedback AV feedback
JUMPER FUNGTIONS	Torque mode Zero reference interlock	Dual supply voltage 4-20mA input	Phase angle limit 50% stall threshold
PARFORMANGE FEATURES	Dual loop control Relay driver o/ps	Precision tacho rectifier International compatability	Compact design Systems inputs/outputs

MECHANIGAL DIMENSIONS

The unit should have a substantial earth connected to the heatsink earth screw provided. Employ a star washer adjacent to the heatsink for optimum earth continuity. The fixing bolts should be 5 mm by 35 mm for the $1600 / 1600 \mathrm{i}$ and 5 mm by 50 mm for the 3200 series.

TYPIGAL APPLIGATIONS

BASIC CONNECTION

TORQUE CONTROL WITH OVERSPEED LIMITING BY SEPERATE SPEED SETPOINT.

INSTALLATION GUIDE FOR SYSTAMS USED IN THIE EU

Special consideration must be given to installations in member states of the European Union regarding noise suppression and immunity. According to IEC 1800-3 (EN61800-3) the drive units are classified as complex components only for professional assemblers, with no CE marking for EMC. The drive manufacturer is responsible for the provision of installation guidelines. The resulting EMC behaviour is the responsibility of the manufacturer of the system or installation. The units are subject to the LOW VOLTAGE DIRECTIVE 73/23/EEC and are CE marked accordingly.

Following the procedures outlined below will normally be required for the drive system to comply with the European regulations, some systems may require different measures. Installers must have a level of technical competence to correctly install. Although the drive unit itself is not subject to the EMC directive, considerable development work has been undertaken to ensure that the noise emissions and immunity are optimised.

* EN61800-3 specifies 2 alternative operating environments. These are the domestic (1st environment) and industrial (2nd environment). There are no limits specified for conducted or radiated emissions in the industrial environment, hence it is usual for the filter to be omitted in industrial systems.

Definition of an industrial environment. All establishments other than those directly connected to a low-voltage power supply network which supplies buildings used for domestic purposes.

DRIVE INSTALLATION REQURBEMENTS FOR EMG COMPLIANGE

Keep parallel runs of

 power and control cables at least 0.3 m apart. Crossovers must be at right anglesKeep sensitive components at least 0.3 m from the drive and power supply cables

The AC connections from the filter to the drive must be less than 0.3m or if longer, correctly screened
Do not run filtered and unfiltered AC supply cables together
Control signals must be filtered or suppressed eg control relay coils and current carrying contacts. The drive module has built in filters on signal outputs

The AC supply filter must have a good earth connection to the enclosure back plane. Take care with painted metal to ensure good conductivity.

The metal enclosure will be the RF ground. The AC filter, drive earth and motor cable screen should connect directly to the metal of the cabinet for best performance

The AC input filter has earth leakage currents. Earth RCD devices may need to be set at 5% of rated current

Linear control signal cables must be screened with the screen earthed at the drive end only. Minimise the length of screen stripped back and connect it to an analogue earth point
The motor cable must be screened or armoured with 360 degree screen terminations to earth at each end. The cable must have an internal earth cable and the screen must extend into the enclosure and motor terminal box to form a Faraday cage without gaps

The internal earth cable must be earthed at each end. The incoming earth must be effective at RF. WARNING! the earth safety must always take precedence.

CUUTIPLE DRIVES WIIH ONE FILTAR AND EARTHING METHODS

The filter should be rated for the worst case total armature current load. The drive units are designed to function normally on unfiltered AC supplies shared with other thyristor DC drives. (not AC drives)
 3

WARNING DO NOT EARTH ANY CONTROL TERMINALS OF NON-ISOLATED DRIVES (1600). (The analogue clean earth is used for signal screens only with model 1600)

Block diagram and terminal specification.

1 +10V PRECISION REFERENCE 10 mA MAX. SHORT CCT. PROOF
2 MINIMUM END OF SETPOINT POT OR 4-20 mA CURRENT LOOP I/P

3 SPEED DEMAND INPUT 0-10V FOR 0-100\% SPEED
4 COMMON. (4-20mA RETURN)
5 COMMON. (connect to earth for protective class 1 on 1600 i and 3200 i) WARNING DO NOT EARTH 1600, this product is non-isolated
6 AUXILIARY INPUT. ON BOARD JUMPER SELECTS DIRECT SPEED OR TORQUE MODE. 0-10V FOR 0-100\% CONTROL
7 CONNECT TO COMMON TO RUN 60 ms ON $/ 20 \mathrm{mS}$ OFF
(WARNING. RUN is an electronic inhibit function. The field remains energised, and all power terminals remain 'live'.
RUN must not be relied upon during hazardous operations)
8 COMMON (internally connected to T4, T5, T58, T68)
9 TACHO INPUT 25-400V FULL SCALE. + OR - POLARITY
10 RELAY CONTACT NC RELAY CONTACT RATING 1 AMP 240 V AC RATINGS ACCORDING TO CSA
11 RELAY CONTACT NO
GE RATING OF RELAY
TERMINALS 10/11/12 MUST NOT EXCEED $30 V$ AC OR 42.4V DC.
12 RELAY POLE

A1 + ARMATURE OUTPUT
A2 -ARMATURE OUTPUT
F2- FIELD OUTPUT THE 3200i HAS TWO 2A FUSES WHICH PROTECT THE FIELD AND POWER SUPPLY TRANSFORMER ONLY. FOR A HALF WAVE AND POWER SUPPLY TRANSFORMER ONLY. FOR A HALF WAVE
FIELD VOLTAGE CONNECT FIELD TO F2- AND L2/N, THIS WILL

$$
\begin{array}{ll}
\text { F1 + FIELD OUTPUT } & \text { FIELD VOLTAGE CONNECT FIELD TO F2- AND L2/N } \\
& \text { GIVE AN OUTPUT OF 0.45 TIMES THE AC SUPPLY }
\end{array}
$$

L2/N AC SUPPLY INPUT ACCORDING TO SUPPLY SELECT JUMPER
L AC SUPPLY INPUT ACCORDING TO SUPPLY SELECT JUMPER

68 DRIVE COMMON
SIGNAL PADS ON TOP EDGE (TERMINAL COMPATIBLE)

67 +24V OUTPUT 25mA MAXIMUM DO NOT SHORT
66 AUXILIARY SPEED INPUT 0 TO 10V FOR 0-100\% RAMPED SPEED
65 AUX. INVERTING SPEED INPUT 0 TO -10V FOR 0-100\% RAMPED SPEED
64 INPUT TO CURRENT LOOP. 0-5V FOR 0-100\% CURRENT

63 -12V OUTPUT 10mA MAX. DO NOT SHORT.
62 STOP/START INPUT. CLOSE TO -12V TO ACTIVATE STALL CONDITION. CLOSE TO +12 V TO RELEASE STALL CONDITION.
$61+12 \mathrm{~V}$ OUTPUT 10 mA MAX. DO NOT SHORT.
58 DRIVE COMMON
57 SPEED DEMAND O/P 0 TO -10V REPRESENTS 0-100\% DEMAND. OUTPUT IMPEDANCE 1K OHMS

56 SPEED OUTPUT. TYPICALLY 7.5V FULL SCALE. ADJUSTMENT OF MAX SPEED PRESET WILL ALTER THE FULL SCALE READING FROM 4V (ACW) TO 9V (CW).

55 SETPOINT RAMP OUTPUT 0-10V. IMPEDANCE 1 K OHMS
54 CURRENT OUTPUT 0-5V FOR 0-100\% OF CHOSEN RANGE (S1, S2). 1K IMPEDANCE.

53 ZERO SPEED RELAY DRIVER O/P MAX 100mA Switches to -24V
52 STALL RELAY DRIVER O/P MAX 100mA Switches to -24V
51 -24V RELAY SUPPLY 25mA DO NOT SHORT

Ensure supply is disconnected before working on unit

POWER CABLING

Use correctly rated cable minimum 600V AC 2 times armature current

FUSING

The drives MUST BE FUSED EXTERNALLY with semiconductor fuses. The fuses must be rated at 1.75 times armature current and have an $I^{2} t$ rating lower than the value listed in the specification page 8. Any warranty will be invalid if the fusing is incorrect.

CONTROL SIGNALS

All control inputs to the 1600 are NON- ISOLATED. Do not connect any terminal to earth or other non-isolated voltage. The 1600i and 3200i have isolated control terminals, and may be connected to other systems. Avoid running signal cables close to power cables.

SUPPRESSION

The drives have excellent noise immunity. However installations involving electrical welding or RF induction heating may require further filters on the line and armature terminals. Contactor coils and sparking contacts may also require suppression. A 100R in series with 0.1 uF cap. is usually adequate in these situations. Refer to page 3 for EMC guidelines.

PRESETS, SWITCHES, JUMPERS

Always use the correct insulated adjustment tools. Do not touch. Electric shock hazard exists!

MECHANICAL

Optimise heatsink airflow. Avoid vibration and ambient temps outside -10 C and +40 C . Protect the drive from pollutants.

MOTOR

Foot mounted motors must be level and secure. Protect motors from ingress of foreign matter during installation. Ensure accurate alignment of motor shaft with couplings. Do not hammer pulleys or couplings onto the motor shaft. Before running the motor complete the following check list.

1) Correct insulation resistance between all windings and earth with all drive cables disconnected
2) Check inside connection box for foreign objects, damaged terminals etc.
3) Check that brushes are in good condition, correctly seated and free to move in brush boxes. Check correct action of brush springs.
4) Motor vents must be freed of any obstruction or protective covers prior to running.
5) WARNING reversing systems. Do not transpose the armature connections until the motor has stopped. Failure to heed this warning will cause damage.

SUPPLY

Please ensure that the supply selection jumper on the drive matches the incoming supply. Failure to do this may result in permanent damage to the drive unit and will invalidate any warranty.

INITIAL SETTINGS

The drive units are shipped to run on the highest supply option at nominal speed, in ARMATURE VOLTAGE feedback mode, in the lowest current range. To change this run through switches S1 to S8 and select accordingly.

S1 S2 Set switches to give desired current range
S3 S4 SPEED. Calculate desired full scale feedback voltage and select range. Adjust within the range by using the MAX SPEED preset. Feedback may be tacho OR armature.
S5 S6 Select according to desired relay function
S7 Normally OFF. When on, the power up inhibit function will operate. Reset with T62.

S8 ON for Armature voltage feedback. OFF for Tacho feedback.

PRESET POT SETTINGS

MAX CURRENT. cw rotation gives 0 to 100\% current limit. eg. 50% rotation gives 50% current limit. Check motor rating plate to find correct limit. (S1 S2 can provide 4 current ranges)

Anticlockwise	MIN SPEED	DOWN RAMP
	UP RAMP	IR COMP
Midway	STAB	

POWER ON Check ON lamp lights

CLOSE RUN CONTACT (see caution note on page 6) Gradually increase external setpoint, check motor rotation. If the direction is wrong, TURN OFF and swap A+, A-

INCREASE SETPOINT.

Drive should ramp up to full speed. Fine adjust with MAX SPEED preset. Do not exceed armature voltage rating. Reduce setpoint, drive should ramp down to zero. Adjust MIN SPEED to desired level. Run motor up and down and adjust RAMPS.

STABILITY

Adjust STAB to improve response if necessary. Clockwise rotation gives faster response. Excessive rotation in either direction may lead to instability depending on load.

IR COMP

Speed droop may occur where armature voltage feedback is used. This is compensated for by clockwise rotation of IR COMP preset. Excessive rotation may lead to instability. No IR COMP is required for systems with tacho feedback.

TORQUE SYSTEMS

See typical applications. In this mode the lowest setpoint has priority. Hence the speed setpoint is set to demand a speed slightly in excess of the working speed, and then the torque setpoint will always be operating as a limit. In the event of a web break for example, the motor will only run up to the level set on the speed pot.

Product manual 1600, 1600i, 3200i. Page 5

LAMPS

ON On indicates AC power is applied
STALL Stall lamp lights and drive quenches if stall timer trips. see below for description of timer characteristics.

PRESETS
MAX Rotate clockwise to increase speed. Change
SPEED range with S3 and S4
MIN Rotate clockwise to increase minimum SPEED speed. Use to adjust 4-20mA loop burden resistor between 0 and 390R if $4-20 \mathrm{~mA}$ mode is selected

UP Rotate clockwise to increase drive
RAMP acceleration. Span 1 to 30 seconds

IR
COMP
DOWN
RAMP

STAB

MAX CURRENT

Rotate clockwise to increase drive deceleration. Span 1 to 30 seconds. Note, natural coast down is a limit.

Rotate clockwise to increase response. Excessive rotation may cause instability. If rated motor voltage is much lower than AC supply then anticlockwise is prefered.

Rotate clockwise to increase level of armature voltage droop compensation. Excessive rotation may cause instability. Always set fully anticlockwise with tacho.
Rotate clockwise to increase current. Use S1 and S 2 to select range

Anticlock

Midway

Clockwise 100% represents the maximum unit rating. The MAX CURRENT PRESET can be used to adjust from 0% to the selected maximum percentage $\begin{array}{llll}\text { S1 } & \text { both off } \\ \mathrm{S} 2 \\ 0-25 \% & \mathrm{~S} 1 \mathrm{on} \\ 0-50 \%\end{array} \square \begin{aligned} & 0-75 \% \\ & \mathrm{~S} 2 \mathrm{on}\end{aligned} \square \begin{aligned} & \text { on on } \\ & 0-100 \%\end{aligned}$

These two switches allow four maximum feedback voltage ranges to be selected. Use the MAX SPEED PRESET to adjust within the range drive will control from 0 V to the selected maximum for a $0-10 \mathrm{~V}$ input

These two switches allow the function of the relay to be determined
S5 when on the relay remains energised until a stall condition occurs
S6 when on the relay is energised for speeds above 5% of full scale. With both switches on, the relay de-energises when a stall condition occurs AND the motor speed has fallen below 5% of full scale
S7 HOLD. when on the drive will power up in a stall condition. It may be reset by momentarily shorting pad T61 to T62.
(top edge)
S8 This switch allows the selection of the source of speed feedback. When on the ARMATURE VOLTAGE is selected. When off, a tacho.
jumper in TORQUE position, terminal 6 becomes TORQUE input, in SPEED position, terminal 6 is direct speed I/P

240 SUPPLY SELECT This jumper
 Refer to specificaction for tolerances. CHECK model type 1) $240 / 110 \mathrm{~V} \mathrm{AC} \mathrm{or} 2) 60 / 30 \mathrm{~V} \mathrm{AC}$

CAUTION

For frequent stopping or jogging it is not good
practice to rely on switching the supply off and on to stop and start with the run contact permanently closed. This may result in an uncontrolled current pulse for one half mains cycle under certain conditions. Eg main contact bounce. This could lead to undesired motor movement or device damage. Use a spare NO contact on the main supply contactor in series with T7 and any other RUN contacts in rapid start stop systems

θ	θ
F2- F1+	

AC supply voltage legend,
selector marked HIGH/LOW

TROUBLE SHOOTING.

The drive consists of 2 high accuracy feedback control loops.

1 The 1600 unit IS NON isolated DO: NOT connect the electronics to earth or other: non-isolated voltage

2

 \% to other instruments, eg panel meter Ensure that the instrument can float safely at high voltage3 For systems involving coninection to other controllers you must use isolated: drive models 1600: or 3200 i
4 Remember all the wires pots contacts etc that are connected to the terminals will be floating: at mains: potential:

5 STAL Problems show by stall lamp coming on after runining are caused by the drive unit not able to give set speed Typical SLAL reasons a) MAX CURRENT preset not correctly set hence Insufficient torque

7 Motor not powerfuil enough for apoplication Speed calibration set: beyond capability of supply.
8 Any factor which prevents motor from rotating at set speed, eg jammed load low supply voltage.

9 Pot wired with T2 and T1 transposed.
Motor slows down instead of speeding up

10 Pot wired with T2 and T3 transposed. Motor slows down for clockwise rotation. T1 may be shorted to T2.

11 Pot wired with T1 and T3 transposed. Motor slows down for anti-clockwise rotation. T1 becomes shorted to T2.

18 Field resistance should normally be a few hundred ohms. The field must be isolated from earth and the armature
19 Do not open circuit the field. Do not open circuit the armature unless RUN is opened first.
20 The AC supply must lie within the limits specified on page 8. Ensure the selection jumper is correct.

SPECIFICATION

SPRINT ELECTRC

Sprint Electric Limited

